
P
arallelization of the N

IM
R

O
D

 C
ode

P
arallelization of the N

IM
R

O
D

 C
ode

A
uthors: A

lphabetical by Institution

A
. K

oniges, A
. T

arditi, X
. X

ueqiao, L
aw

rence L
iverm

ore N
at. L

ab, 
D

. B
arnes, L

os A
lam

os N
ational L

ab,
S. P

lim
pton, Sandia A

lbuquerque,
+ the N

IM
R

O
D

 T
eam

, 
+ISIS-code T

eam
, Sandia L

iverm
ore

+C
R

A
Y

 R
E

SE
A

R
C

H
 and U

niv. T
exas C

ollaborations

Jointly supported by D
O

E
-O

FE
 and D

O
E

-M
IC

S

38th A
nnual M

eeting, A
PS-D

PP, 11 - 15 N
ov. 1996, D

enver



O
U

T
L

IN
E

•
Sum

m
ary of Parallel C

oncepts and 
A

rchitectures

•
H

ighest L
evel N

im
rod Parallelization

•
Solver L

evel Parallelization

•
First results
–

C
R

A
Y

 R
esearch T

3E
 at U

. T
exas

–
C

R
A

Y
 R

esearch T
3D

 at L
L

N
L



R
eview

: W
hat is M

PP?
M

P
P

 M
assively P

arallel P
ro

cesso
r

S
M

P
 P

arallel P
ro

cesso
r

cp
u

cp
u

cp
u

In
terco

n
n

ect

M
em

o
ry (sh

ared
)

cp
u

cp
u

cp
u

M
em

M
em

M
em

2-32+ p
ro

cesso
rs to

d
ay

128 - u
p

 to
d

ay
M

em
o

ry sh
ared

M
em

o
ry p

h
ysically d

istrib
u

ted
H

ig
h

 p
o

w
ered

 P
ro

cesso
rs (C

90, S
M

P
’s)

H
ig

h
 P

o
w

ered
 M

icro
s (e.g

. A
lp

h
a)

 

?
 In

terco
n

n
ect ?



M
PP T

oday

o
m

eg
a         IB

M
 S

P
2, M

eiko
3D

 T
o

ru
s     C

ray T
3D

,E

cp
um

em
o

ry

S
w

itch
 / N

etw
o

rk

cach
e

R
S

6000 - IB
M

D
ec A

lp
h

a - C
ray

S
p

arc - T
M

C
, M

eiko

16 M
B

ytes - 256 M
B

ytes
R

am
 p

er p
ro

cesso
r

P
ro

cesso
r

M
em

o
ry

N
etw

o
rk



C
ray T

3D

h
ttp

://w
w

w
.cray.co

m
/P

U
B

L
IC

/p
ro

d
u

ct-in
fo

/m
p

p
/C

R
A

Y
_T

3D
.h

tm
l

D
ec E

V
4

 (150 M
F

lo
p

s)
16-64 M

B
ytes

D
ec E

V
4

 (150 M
F

lo
p

s)
16-64 M

B
ytes

N
etw

o
rk 

In
terco

n
n

ect



M
essage Passing

A
[
1
0
0
]

E
a
c
h
 
P
r
o
c
e
s
s
i
n
g
 
E
l
e
m
e
n
t
 
(
P
E
)
 
o
w
n
s
 
p
a
r
t
 
o
f
 
t
h
e
 
d
a
t
a
.

O
t
h
e
r
 
P
E
’
s
 
m
u
s
t
 
g
e
n
e
r
a
t
e
 
m
e
s
s
a
g
e
s
 
t
o
 
a
c
c
e
s
s
 
m
e
m
o
r
y
.

A
c
c
e
s
s
 
t
i
m
e
s

l
o
c
a
l
 
m
e
m

c
a
c
h
e

n
o
n
-
l
o
c
a
l
 
m
e
m

P
ro

c 1
...sen

d
 A

[25]
...

P
ro

c 1
...receive A

[25]
...



Steps in Parallel C
ode D

evelopm
ent

•
C

ode design to avoid bottle necks

–
B

lock dom
ain decom

position of 2D
 toroidal m

esh

–
B

locks seam
 together

–
B

locks or M
ultiple blocks assigned to processors

–
FFT

’s in third dim
ension restricted to block

–
C

om
m

unication betw
een blocks via M

essage Passing Interface 
(M

PI)

–
Single Processor O

ptim
ization

–
U

se optim
ized libraries for com

pute intensive pieces

–
O

ptim
ize use of cache

•
M

ultiple Processor O
ptim

ization

–
overlap com

m
unication and com

putation

•
Iterative Solver D

esign Issues



N
IM

R
O

D
 C

oding C
hoices

•
M

essage-passing parallelism
 w

ith F90/M
P

•
F90 provides dynam

ic m
em

ory, rich data 
structures

•
M

PI provides portability to any m
achine w

ith a 
single-processor F90 com

piler

•
M

PI allow
s irregular, asynchronous 

com
m

unication

•
Sam

e code w
ill run on w

orkstation, C
ray C

90, or 
parallel platform

s: 
–

C
ray T

3D
/E

–
IB

M
 SP2

–
W

orkstation C
lusters



G
rid Structure of N

IM
R

O
D

•
N

IM
R

O
D

 grid is a general collection of joined 
sub-blocks m

apped to the poloidal plane.

•
E

dge points of adjacent blocks join exactly.



Sub-blocking w
ith associated seam

s

1-d seam
s

seam
 pts

im
age pts

m
ulti-block grid

E
ach edge point has 

“im
age” points in other 

blocks/seam
s.



FE
 integration stencil for block interior and 

across block and/or processor boundaries

•
If 2 adjacent blocks are on different processors, a data exchange is 

needed to com
plete the integration.

Interior

A
cross boundaries



Inherent parallelism
 in N

IM
R

O
D

•
E

ach processor ow
ns 1 or m

ore “blocks” 
and their associated “seam

s”.

•
C

om
putations can be done on each block 

independently.

•
O

nly connection/com
m

unication w
ith other 

processors is via “seam
s”



Parallel T
ools are used to analyze perform

ance







Perform
ance A

nalysis w
ith A

pprentice: B
row

se





Perform
ance A

nalysis is B
eginning w

ith A
pprentice

•
C

om
piling, loading and executing w

ith new
/old languages on M

PP 
architectures is difficult

•
A

pprentice is being used to identify problem
 areas

•
E

xclude option is used to isolate subroutines

•
Subroutines are sorted by seconds (A

m
dahl's L

aw
)

•
G

Flop rate can be com
puted only after flops in libraries are defined



C
ode Perform

ance:
              1 T

otal processors (PE
s) allocated to this application

    2.28 x 10^6 Floating point operations per second (for 1 PE
s)

    2.83 x 10^6 Integer operations per second (for 1 PE
s)

    2.28 x 10^6 Floating point operations per second per processor
    2.83 x 10^6 Integer operations per second per processor

    3.20 x 10^6 Private loads per second per processor
    1.15 x 10^6 Private stores per second per processor
    0.00 x 10^6 L

ocal shared loads per second per processor
    0.00 x 10^6 L

ocal shared stores per second per processor
    0.00 x 10^6 R

em
ote loads per second per processor

    0.00 x 10^6 R
em

ote stores per second per processor

    3.03 x 10^6 O
ther instructions per second per processor

   12.50 x 10^6 Instructions per second per processor

    0.71 Floating point operations per load
    0.89 Integer operations per load

Single Processor O
ptim

ization is in progress



            56 sec (12.61%
) executing "w

ork" instructions
            77 sec (17.31%

) loading instruction and data caches
             0 sec ( 0.00%

) w
aiting on shared m

em
ory operations

             0 sec ( 0.00%
) w

aiting on PV
M

 com
m

unication
             0 sec ( 0.01%

) executing "read" or other input operations
            10 sec ( 2.35%

) executing "w
rite" or other output operations

           301 sec (67.72%
) executing uninstrum

ented functions
                   --------
                   100.00%

  T
otal

T
im

e spent perform
ing different task types:



D
etailed D

escription of Single PE
 Perform

ance on T
3D

T
he com

bined losses due to single instruction issue, instruction cache and data
cache activity are estim

ated to be 77 sec, or 17.31%
 of the m

easured tim
e for

this program
. 

T
he com

bined expenditure of tim
e for output routines is m

easured to be 10 sec,
or 2.35%

 of the m
easured tim

e for this program
.  

T
he com

bined expenditure of tim
e for input routines is m

easured to be 0 sec, or
0.01%

 of the m
easured tim

e for this program
.  

T
he sections of code, below

 the current selection, w
ith the largest am

ount of
total tim

e including subordinate code and called routines, are N
IM

R
O

D
, A

D
V

A
N

C
E

,
R

B
L

O
C

K
.

T
he sections of code, below

 the current selection, w
ith the largest am

ount of
total tim

e excluding subordinate code and including called routines, are
A

D
V

A
N

C
E

@
128, R

B
L

O
C

K
, IN

T
E

G
R

A
N

D
S.



Parallel A
dditions to Serial N

IM
R

O
D

•
A

ssignm
ent of blocks to processors  (load-balancing)

•
Setup of data structures for parallel seam

ing.

•
K

nit seam
s betw

een blocks.

–
used in explicit tim

estepper

–
used in m

atrix-vector m
ultiply of C

G
-solver

•
D

ot-products for C
G

-solver

•
 I/O



Serial Seam
 C

onnection

1) C
opy from

 block-edge grid points to seam
s

2) L
oop over im

ages of each seam
 point, sum

 
im

age values to block-edge grid points

3) A
pply external boundary conditions.



Parallel Seam
 C

onnection

1) Send m
y seam

 data to neighboring processors.

2) For seam
 points w

here I ow
n both im

age pairs, sum
 im

age 
values to m

y block-edge grid points.

3) R
eceive incom

ing im
age data from

 other processors sum
 it 

to m
y block-edge grid points.

4) A
pply external boundary conditions.

5) C
opy from

 m
y block-edge grid points to m

y seam
s.



A
ttributes of Parallel Seam

 
C

onnection routine
•

U
ses asynchronous com

m
unication in irregular pattern of 

connectivity betw
een processors.

•
O

verlaps com
m

unication and com
putation (steps 2-4).

•
Pre-com

putes data structures to optim
ally pack/unpack 

m
essages being exchanged w

ith other processors.

•
Fast !

–
Seam

 com
m

unication is only sm
all fraction of block 

com
putation tim

e.



R
esults

•
Parallel perform

ance of seam
-connection 

kernel

•
Parallel perform

ance of explicit tim
estepper

•
Parallel perform

ance of C
G

 solver using 
diagonal pre-conditioning



T
im

ing R
esults for Parallel Seam

 
C

onnection on T
3E

•
1.02 m

illion grid cells, 174 blocks, 51200 seam
 

points, 3 values/grid-cell

•
C

PU
 seconds for 1 seam

-operation:

P
rocs

1
2

5
10

20
30

T
im

e
0.64

0.25
0.12

0.081
0.033

0.024

• Scales roughly linearly w
ith size of grid and num

ber 

  of processors



T
im

ing R
esults for 

E
xplicit N

im
rod T

3D
 C

alculation

•
C

PU
 seconds for 100 tim

esteps on the T
3D

 show
s 

excellent scalability as problem
 size increases.

B
locks/C

ell
1 P

E
2 P

E
s

4 P
E

s
8 P

E
s

16 P
E

s
32 P

E
s

4/400
42.2

19.0
10.3

16/1600
145.3

38.5
11.0

64/6400
75.2

53.7
21.0

256/25,600
150.5

75.9
1024/102,400



T
im

ing R
esults for 

E
xplicit N

im
rod T

3E
 C

alculation

•
C

PU
 seconds for 100 tim

esteps on the T
3E

 show
s 

excellent scalability as problem
 size increases.

B
locks/C

ell
1 P

E
2 P

E
s

4 P
E

s
8 P

E
s

16 P
E

s
32 P

E
s

40 P
E

s
4/400

7.85
4.05

2.35
16/1600

31.7
7.95

2.35
64/6400

16.5
8.45

4.55
4.55

256/25,600
33.0

17.0
14.8

1024/102,400
71.5

62



T
im

ing R
esults for 

Im
plicit N

im
rod T

3E
 C

alculation

•
C

G
 solver w

ith diagonal preconditioning

•
50 tim

esteps, roughly 40 C
G

 iterations per step

•
Preconditioning m

ethods for C
G

 solver require 
m

ore study

B
locks/C

ell
1 P

E
2 P

E
s

4 P
E

s
8 P

E
s

16 P
E

s
32 P

E
s

40 P
E

s
4/400

23.5
12.4

6.9
16/1600

89.7
24.8

7.9
64/6400

43.3
21.7

12.1
12.6

256/25,600
88.3

44.4
40.0



First Perform
ance R

esults Show
 

N
early Ideal Speed-up (even for fixed problem

 size)

0
.0

0
1

0
.0

1

0
.1 1

1
1

0
1

0
0

T
3E

 E
xp

licit S
o

lver
400 cells
1600 cells
6400 cells
25,600 cells
102,400 cells
Ideal S

peed-up

CPU Sec/Time Step

N
u

m
b

er o
f P

ro
cesso

rs



Scaled Speed-up C
om

parison of T
3E

/D

•
T

3E
 is factor of 4.5 

faster
–

2X
 processor speed

–
chaining

–
cache effects

•
Scalability is virtually 
linear for both 
m

achines
0.01

0.1 1 10

1
10

100

T
3E

Linear

T
3D

Linear

CPU secs/time step

N
u

m
b

er o
f P

ro
cesso

rs



C
onclusions

•
B

lockw
ise-design of N

IM
R

O
D

 enables rapid m
essage-passing 

parallelization.

•
 E

xplicit and diagonal-preconditioned C
G

 solver are running w
ell in 

parallel 

•
T

3E
 out-perform

s T
3D

, but both perform
 w

ell

–
(C

ache, Processor speed)

•
 F90: great language

–
terrible com

pilers  in general

–
G

ood on T
3E

, but libraries still m
issing 

–
A

cceptable on T
3D

, but perform
ance tools need im

provem
ent

–
does it produce fast code ?? (open question)



Future W
ork

•
Im

plem
ent 2nd N

IM
R

O
D

 C
G

 solver 
(block-invert preconditioner) in parallel

•
T

est convergence and perform
ance of 

solvers as a function of num
ber-of-blocks, 

num
ber-of-processors, physics being solved

•
T

ry new
 iterative solvers

•
O

ptim
ize code perform

ance



Special A
cknow

ledgem
ents

•
D

O
E

 M
IC

S O
ffice supported SN

L
 w

ork on 
solvers and parallelization for the N

IM
R

O
D

 
project

•
T

he H
igh Perform

ance C
om

puting Facility at U
T

 
A

ustin provided com
puter tim

e on their 40-
processor C

ray T
3E

•
T

he Institutional C
om

puting Facility at L
L

N
L

 
provide com

puter tim
e on their 256-processor 

C
ray T

3D


